
A Comparison of Dynamic Fitness Schedules for

Evolutionary Design of Amplifiers

Jason D. Lohn
Caelum Research Corp.

NASA Ames Research Center
Moffett Field, CA 94035-1000
jlohn@arc.nasa.gov

Gary L. Haith
Recom Technologies Corp.
NASA Ames Research Center
Moffett Field, CA 94035-1000
haith@ptolemy.arc.nasa.gov

Silvano P. Colombano
Computational Sciences Div.
NASA Ames Research Center
Moffett Field, CA 94035-1000
scolombano@mail.arc.nasa.gov

Dimitris Stassinopoulos
Computational Sciences Div.
NASA Ames Research Center
Moffett Field, CA 94035-1000
stassi@ptolemy.arc.nasa.gov

Abstract

High-level analog circuit design is a complex prob-
lem domain in which evolutionary search has recently
produced encouraging results. However, little is known
about how to best structure evolution for these tasks.
The choices of circuit representation, fitness evaluation
technique, and genetic operators clearly have a pro-
found effect on the search process. In this paper, we
examine fitness evaluation by comparing the effective-
ness of four fitness schedules. Three fitness schedules
are dynamic – the evaluation function changes over the
course of the run, and one is static. Coevolutionary
search is included, and we present a method of evalu-
ating the problem population that is conducive to mul-
tiobjective optimization. Twenty-five runs of an ana-
log amplifier design task using each fitness schedule are
presented. The results indicate that solution quality is
highest with static and coevolving fitness schedules as
compared to the other two dynamic schedules. We dis-
cuss these results and offer two possible explanations
for the observed behavior: retention of useful informa-
tion, and alignment of problem difficulty with circuit
proficiency.

1 Introduction

High-level circuit design is concerned with producing
designs capable of achieving desired functions, while
ignoring most implementation details. Low-level de-
sign activities are then used to factor in implemen-
tation considerations (e.g., placement and wiring of

the devices) for realization of the target circuit. Elec-
tronic design automation (EDA) software has tradi-
tionally focused on low-level design activities: in some
cases it hastens the design process or optimizes as-
pects of it, and in others, it is a prerequisite in or-
der to deal with circuits having millions of components
(e.g., memory) or vastly complex circuitry (e.g., mi-
croprocessors). EDA tools for high-level circuit design
are less common – most of this work is accomplished
by experienced engineers. Automated high-level cir-
cuit design techniques have started to appear in recent
years, representing a variety of approaches (e.g., [2],
[9], [6]). One approach which appears promising and is
the subject of the work reported below, is the applica-
tion of evolutionary search to high-level analog circuit
design [5, 7, 11].

One of the goals of work in evolvable hardware is to
automatically synthesize circuits that are better than
those produced by an expert circuit designer. While
recent results provide hope that we may achieve this
goal, more research is needed. Thus it makes sense to
investigate how to best structure evolutionary search
for these tasks. The main ingredients – circuit rep-
resentation, fitness evaluation technique, and genetic
operators – each have a profound effect on the search
process. We focus on fitness evaluation in the work
reported below. Specifically, using an analog amplifier
design task, we compare the effectiveness of four fitness
schedules:

• static schedule - a single fitness function is used to
evaluate all individuals throughout the run,

Administrator
J.D. Lohn, G.L. Haith, S.P. Colombano, D. Stassinopoulos, ``A Comparison of Dynamic Fitness Schedules for Evolutionary Design of Amplifiers,'' Proc. of the First NASA/DoD Workshop on Evolvable Hardware, Pasadena, CA, IEEE Computer Society Press, 1999, pp. 87-92.

• fixed schedule - a pre-determined schedule of fit-
ness functions whereby difficulty is increased at
regular intervals,

• adaptive schedule - fitness function difficulty is in-
creased only when circuit performance is commen-
surate,

• coevolutionary schedule - a population of con-
straints (“problems”) is introduced consisting of
individuals that embody a level of difficulty. These
problems then coevolve with the circuits (“solu-
tions”) such that the difficulty increases as the cir-
cuits gain greater proficiency.

The goal of the design task was to generate a cir-
cuit that provides strong and constant amplification
(gain) with low power dissipation and dc bias. This
problem has the following desirable properties: am-
plifiers are practical circuits, optimization of multiple
constraints makes them difficult to design, amplifier
design is a relatively well explored design space, and
it can be made more complex and difficult by adding
further constraints and making the constraints more
stringent.
The remainder of this paper is organized as follows.

Section 2 provides more detail on analog circuit design
and the specific design task used in the experiments.
Section 3 elaborates on the fitness schedules. The ex-
perimental setup and results are presented in Sections 4
and 5, and we conclude in Section 6 with a discussion
of the results.

2 The Design Task

The amplifier design task chosen was the inverting op-
erational amplifier. Such a circuit has found wide appli-
cation and is considered one of the workhorses of analog
circuit design. Figure 1 shows the symbol and connec-
tions for an ideal inverting amplifier. This circuit gen-
erates an output voltage (vo) that consists of the input
voltage (vi) multiplied by a gain factor, A. Voltage gain
is thus equivalent to vo/vi. It is common to express
gain values in decibels (dB) using 20 log10(A). Ampli-
fiers may be either inverting or non-inverting, where
an inverted output signal has a 180◦ phase shift com-
pared to the input. The dc gain of the amplifier refers
to the gain when only constant voltage/current sources
are applied. The linearity of the gain is the degree to
which the gain remains constant across input voltages:
ideally the voltage transfer characteristic (vo vs. vi)
should be linear. The dc component that shifts the
entire signal up or down is called the dc bias of the
circuit. Power dissipation is the amount of power used

vs ~

Rs

RFB

-

+

vo

vo
vs

RFB

Rs
A = =

Figure 1: Ideal inverting amplifier showing how gain is
set by the ratio of the feedback to source resistor.

by the circuit and is indicative of the amounts of cur-
rent flowing in the circuit. For simple amplifiers, there
are publications available that catalog many designs.
Since there are numerous parameters in amplifier de-
sign (e.g., input/output impedance, power dissipation,
distortion, common-mode rejection, power supply re-
jection), the design task can become quite challeng-
ing and typically requires an experienced designer. For
the amplifier design experiments below, we take into
account four objectives: dc gain, linearity of gain, dc
bias, and power dissipation.

3 Fitness Schedules

The four fitness schedules mentioned above are dis-
cussed below in greater detail.

3.1 Static Fitness Schedule

The static fitness schedule is simply the standard
evaluation technique in genetic algorithms [4]: a sin-
gle fitness function is used to evaluate all individuals
throughout the run. The fitness function used is similar
to those described in [5, 7]. Briefly, it is a sum of nor-
malized error values, where the errors are the shortfalls
from the desired objectives: dc gain, dc bias, power dis-
sipation, and the linearity of the dc gain. The gain is
the slope of the dc transfer characteristic (i.e., the out-
put voltages when the input voltage is swept across five
input voltages). The slope, m, is calculated by using
the endpoints of the transfer characteristic. The linear-
ity of the gain is computed as |m−ml|+|m−mr|, where
ml is the slope of the line segment formed by the two
leftmost output voltages and mr is analogous for the
two rightmost output voltages. The dc bias is simply vo
when vi = 0 volts, and power dissipation is the amount
of power consumed during circuit operation. The gain
objective was 60.0 dB, the bias and power dissipation
objectives were 1.0 volt and 1.0 watt, respectively, and

the linearity objective was 10.0. These values were cho-
sen based on our previous work [8]: they represent a
moderately difficult design task that we knew to be
solvable.

3.2 Fixed Fitness Schedule

The fixed fitness schedule is a pre-determined schedule
of fitness function modifications. As used in the ex-
periments below, the difficulty-level of the fitness func-
tion is increased every 50 generations. With a total of
5000 generations, this allowed for a total of 100 “dif-
ficulty steps.” Each of the fitness functions used over
the course of the run are of the same form as the fitness
function used in the static schedule above. Writing our
gain, bias, power, and linearity objectives as a target
vector, 〈G,B, P, L〉, we specified that the difficulty level
begins at 〈1.0, 10.0, 10.0, 1000.0〉 (easiest) and ends at
〈60.0, 1.0, 1.0, 10.0〉 (most difficult). The increases in
difficulty are then evenly divided over the 100 steps,
per objective. This is admittedly an arbitrary sched-
ule, but that is an inherent property of a fixed schedule
- it is subject to the biases of the implementor. Such
biases can be advantageous if knowledge of the fitness
landscape is known a priori, and potentially disadvan-
tageous otherwise.

3.3 Adaptive Fitness Schedule

The adaptive fitness schedule is identical to the fixed
schedule described above except in the following re-
gard: difficulty is incremented “on-demand,” whenever
the current difficulty is solved by at least one circuit in
the population. As in the fixed schedule case, 100 diffi-
culty steps are provided for. If a circuit solves the 100th
fitness function before 5000 generations, it has success-
fully found a compliant circuit, and the run halts. On
the other hand, if 5000 generations elapse and a com-
pliant circuit is not found, the run halts at whatever
difficulty level it has reached.

3.4 Coevolving Fitness Schedule

The main difference between the coevolving fitness
schedule and the other dynamic schedules is the in-
troduction of a second population consisting of target
vectors (tv). The first population of circuits remains
the same as in the other fitness schedules. The tar-
get vector population consists of individuals that spec-
ify problem difficulty. As described above, target vec-
tors are denoted 〈G,B, P, L〉, representing gain, bias,
power dissipation, and gain linearity, respectively. The
individual targets are threshold values – a target is
“solved” if a circuit’s performance equals or surpasses

(either above or below, as appropriate) the thresh-
old specified. For example, 〈63.0, 0.6, 0.8, 9.5〉 solves
〈60.0, 1.0, 1.0, 10.0〉, but 〈58.0, 0.6, 1.2, 18.0〉 does not.
As with the other fitness schedules, the ideal target
vector used was 〈60.0, 1.0, 1.0, 10.0〉. The gain target is
satisfied if a circuit’s gain was 60.0 decibels or greater.
The three remaining targets were satisfied if the cir-
cuit’s performance is less than or equal to the target
values.

Target vectors are represented as a list of floating
point values that are mutated individually by ran-
domly adding or subtracting a small amount (5% of the
largest legal value). Single point crossover was used,
and crossover points were chosen between the values.

Fitness of individual circuits in the main population
was computed as follows. Circuit i “plays” each tar-
get vector in the second population and a score, si, is
computed:

si =
∑
j∈t̂vi

1

total # circuits
that solve tvj

where t̂vi is the set of target vector indexes such that
circuit i solves tvj. Note that the denominator in the
above fraction is guaranteed to be greater than or equal
to one due to the restriction on j. Then si is normalized
linearly between its upper and lower bounds such that
0.0 is the best score and 1.0 the worst:

F (circuiti) = 1.0− si/M2

where M2 is the size of the target vector population.
The effect of s is to reward circuits that solve the more
difficult target vectors. A target vector has the great-
est difficulty level when exactly one circuit can solve
it. If many circuits can solve a particular target vec-
tor, the fitness contribution in s is shared among the
circuits [10].

Fitness of an individual target vector is computed
as follows. Let xj denote the number of circuits that
solve tvj, and M1 be the circuit population size. The
fitness is essentially xj , scaled and normalized, with a
tractability constraint:

F (tvj) =

{
1.0 xj = 0

1
(M1−1)

(xj − 1.0) xj ≥ 1

The tractability constraint gives a target vector a
score of 1.0 (the “worst” score) when no circuits can
solve it. This puts pressure on the target vector pop-
ulation to pose difficult, yet solvable problems to the
circuit population.

4 Experimental Setup

Using the four fitness schedules described above, 25
runs using each schedule were made resulting in a total
of 100 runs. The same pseudo-random number genera-
tor seed was used across each set of four distinct fitness
schedules so that the generation zero individuals would
be identical. Common to each run were the following
parameter settings: population size was 600, crossover
rate was 80%, mutation rate was 5%. For the coevolu-
tion runs,the target vector population used the follow-
ing parameters: population size was 600, crossover rate
was 80%, mutation rate was 50%. Because crossover
points were chosen between target vector values, this
mutation rate was set high to encourage new values to
appear in the population, not just those produced in
generation 0.
Evolution of amplifier designs was accomplished us-

ing the system described in [7]. Briefly, circuits are
represented as lists of circuit-construction instructions
that program an automaton to design a circuit. Resis-
tors, capacitors, and bipolar junction transistors were
the allowed components. The method of incorporating
transistors is described in [8]. Circuits were required
to contain at least 10 components up to a maximum of
150.

5 Experimental Results

To assess the quality of each fitness schedule, we exam-
ined the highest fitness circuits from each run. The per-
formance of these circuits is quantified in correspond-
ing output vectors which, like target vectors, specify
gain, bias, power dissipation, and linearity values. Ta-
ble 1 gives the mean values of individual objectives
across output vectors for each fitness schedule. The
data suggest that static and coevolving fitness sched-
ules performed better than fixed and adaptive sched-
ules. Another way of measuring the quality of the fit-
ness schedules is to look at the number of objectives
solved in each run (assuming each of the four objec-
tives is of equal importance). Table 2 shows the mean
and standard deviation for the number of objectives
solved for each schedule.
Here the relationship among the schedules is clearer:

static and coevolving fitness schedules performed
nearly the same and did better than the performance of
the fixed and adaptive schedules. A two-tailed t-Test
showed that the static and coevolving means are not
significantly different from each other, and are signifi-
cantly different (p < 0.02) from the fixed and adaptive
means.
One of the motivations behind using coevolutionary

fitness gain bias power linearity
schedule [dB] [volts] [watts] [unitless]

static 44.47 0.35 0.69 49.28
fixed 47.59 0.64 1.21 96.63
adaptive 54.13 1.23 1.96 340.74
coevolving 46.71 0.15 0.41 189.75

Table 1: Mean values from the performance of the best
circuits found under 25 runs of each fitness schedule.
The ideal target vector was 〈60.0, 1.0, 1.0, 10.0〉.

fitness
schedule mean std. dev.

static 2.12* 0.67
fixed 1.48 1.12
adaptive 1.16 1.18
coevolving 2.08* 0.49

Table 2: Mean and standard deviation for the number
of objectives solved for 25 runs of each fitness schedule.
Means marked with asterisks (*) are not significantly
different from each other, and are significantly different
(p < 0.02) from those means without asterisks.

search is the notion that the problem difficulty is ad-
justed automatically, rather than having to manually
specify it. To get a sense of how coevolution accom-
plished this, Figure 2 shows four plots (one for each
target objective), each containing 25 curves (fitted us-
ing a fourth-order polynomial). The plots show how
the values of the best target vectors found in each gen-
eration fluctuated during the run. The thick curve rep-
resents the run that found a compliant circuit (i.e., it
solved 〈60.0, 1.0, 1.0, 10.0〉).
What is most striking is the way coevolution, within

the first few generations, reduced the demands for gain
performance because it was the most difficult criterion
to meet. Just as rapidly, the other three objectives
were made more demanding because they were rela-
tively easy to satisfy. Then as the circuit population
scored better in gain, it did so at the expense of power
and linearity: both power and linearity are seen peak-
ing near generations 1000-2000.

6 Discussion

From the results it is seen that static and coevolution-
ary fitness schedules outperformed the fixed and adap-
tive schedules. Although is not completely clear why
this happened, we can offer potential advantages of the

0

0.5

1

0

0.2

0.4

0.1
0

0.1
0.2
0.3

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.2

0.4

0.6

generation

e
a

s
e

 o
f
s
o

lv
in

g
 t
a

rg
e

t

gain

power

bias

linearity

Figure 2: Highest fitness target vector values over the
course of all coevolution runs. The y-axes represent
the difficulty of the objective with 0.0 being the target
(or most difficult) value, and 1.0 being the easiest ob-
jective value. The thick curves represent the run that
found a compliant circuit. Curves were fitted using a
fourth-order polynomial, and therefore sometimes ap-
pear above 1.0 and below 0.0.

static and coevolutionary schedules relative to the fixed
and adaptive schedules. First, because a static fitness
function induces a fitness landscape that never changes
over the course of evolution there is never the possibil-
ity of getting “thrown off” a gradient (as would be the
case if the fitness function changed). Second, we de-
signed coevolution so that it would keep the level of
problem difficulty near the leading edge of circuit pro-
ficiency. Developmental theory suggests (e.g., [1]) that
keeping task difficulty in line with solution performance
aids learning. Third, the fixed and adaptive schedules
are potentially “handicapped” by the somewhat arbi-
trary choice of manually-crafted schedules.

Dynamic fitness schedules can help evolutionary
search because they encourage the population of cir-
cuits to follow potentially better trajectories through
the solution space. Such trajectories could guide evo-
lution in many ways, for example they could amplify
weak gradients in the fitness landscape, “steer around”
meta-stable solution states [10], and usefully decom-
pose or simplify the problem by providing partial rein-
forcement for intermediate solutions [3]. As an illustra-
tion, an amplifier made up of a single wire has excel-

lent performance in terms of bias, linearity and power
dissipation, but has zero gain. Adding some compo-
nents to the circuit might increase the gain, but only
at the cost of a dip in performance on the other three
criteria. Thus, if evolved with a static fitness schedule
(assuming equally-weighted objectives), the single wire
presents evolutionary search with a meta-stable state
that is highly attractive and potentially quite difficult
to escape. In contrast, the fixed fitness schedule in the
present amplifier design task encourages all of the per-
formance objectives (gain, power dissipation, bias, and
linearity) to be solved in parallel by evolution. Like-
wise, coevolution tends to work on gain early in evolu-
tion and to scale back the requirements on bias, power
and linearity until circuits are performing fairly well on
gain.
One issue affecting our results is the question of pa-

rameter sensitivity. Although parameters were kept
the same as possible across all runs, there are undoubt-
edly parameter changes that would strongly affect our
results. Examples include the size of the difficulty steps
in the fixed and adaptive schedules, and form of the co-
evolving fitness calculation.
Given the relatively good performance of coevolu-

tion, we feel that our method of using target vectors
neatly and systematically breaks down multiobjective
optimization problems and may perform well in other
such problems. One of the subjects for further study is
to see how well this technique scales up to optimization
problems having many more objectives.
In conclusion, static and coevolving fitness evalua-

tions did relatively well in our amplifier design task.
Based on our previous work in evolving amplifier de-
signs, we suspected that the static technique would be
able to solve this design task. We find it very encour-
aging that coevolution performed on par with static
fitness schedules and intend to pursue coevolutionary
search in future circuit design tasks.

References

[1] J.L. Elman, Incremental Learning, or the Impor-
tance of Starting Small, Tech. Rept. 9101, Center
for Research in Language, University of California,
San Diego, CA, 1991.

[2] G. Gielen, W. Sansen, Symbolic Analysis for
Automated Design of Analog Integrated Circuits,
Boston, MA: Kluwer, 1991.

[3] G.L. Haith, S.P. Colombano, J.D. Lohn, D.
Stassinopoulos, “Coevolution for Problem Simpli-
fication,” Proc. 1999 Genetic and Evolutionary

Computation Conference, (GECCO-99), 1999, to
appear.

[4] J.H. Holland, Adaptation in Natural and Artifi-
cial Systems, Univ. of Michigan Press, Ann Arbor,
1975.

[5] J.R. Koza, F.H. Bennett, D. Andre, M.A. Keane,
F. Dunlap, “Automated Synthesis of Analog Elec-
trical Circuits by Means of Genetic Program-
ming,” IEEE Trans. on Evolutionary Computa-
tion, vol. 1, no. 2, July, 1997, pp. 109–128.

[6] M.W. Kruiskamp, Analog Design Automation us-
ing Genetic Algorithms and Polytopes, Ph.D. The-
sis, Dept. of Elect. Engr., Eindhoven University of
Technology, Eindhoven, The Netherlands, 1996.

[7] J.D. Lohn, S.P. Colombano, “Automated Analog
Circuit Synthesis using a Linear Representation,”
Proc. of the Second Int’l Conf on Evolvable Sys-
tems: From Biology to Hardware, Springer-Verlag,
Berlin, 1998, pp. 125-133.

[8] J.D. Lohn, S.P. Colombano, “A Circuit Represen-
tation Technique for Automated Circuit Design,”
IEEE Trans. on Evolutionary Computation, to ap-
pear.

[9] E.S. Ochotta, R.A. Rutenbar, L.R. Carley, “Syn-
thesis of High-Performance Analog Circuits in AS-
TRX/OBLX,” IEEE Trans. Computer-Aided De-
sign, vol. 15, pp. 273–294, 1996.

[10] C.D. Rosin, R.K. Belew, New Methods for Com-
petitive Coevolution, Tech. Rept. CS96-491, De-
partment of Computer Science and Engineering,
University of California, San Diego, 1996.

[11] R.S. Zebulum, M.A. Pacheco, M. Vellasco, “Com-
parison of Different Evolutionary Methodologies
Applied to Electronic Filter Design,” 1998 IEEE
Int. Conf. on Evolutionary Computation, Piscat-
away, NJ: IEEE Press, 1998, pp. 434–439.

